3.2.49 \(\int \frac {\sqrt {b \cos (c+d x)}}{\cos ^{\frac {11}{2}}(c+d x)} \, dx\) [149]

Optimal. Leaf size=107 \[ \frac {3 \tanh ^{-1}(\sin (c+d x)) \sqrt {b \cos (c+d x)}}{8 d \sqrt {\cos (c+d x)}}+\frac {\sqrt {b \cos (c+d x)} \sin (c+d x)}{4 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {3 \sqrt {b \cos (c+d x)} \sin (c+d x)}{8 d \cos ^{\frac {5}{2}}(c+d x)} \]

[Out]

1/4*sin(d*x+c)*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(9/2)+3/8*sin(d*x+c)*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(5/2)+
3/8*arctanh(sin(d*x+c))*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {17, 3853, 3855} \begin {gather*} \frac {3 \sin (c+d x) \sqrt {b \cos (c+d x)}}{8 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {\sin (c+d x) \sqrt {b \cos (c+d x)}}{4 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {3 \sqrt {b \cos (c+d x)} \tanh ^{-1}(\sin (c+d x))}{8 d \sqrt {\cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[b*Cos[c + d*x]]/Cos[c + d*x]^(11/2),x]

[Out]

(3*ArcTanh[Sin[c + d*x]]*Sqrt[b*Cos[c + d*x]])/(8*d*Sqrt[Cos[c + d*x]]) + (Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/
(4*d*Cos[c + d*x]^(9/2)) + (3*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(8*d*Cos[c + d*x]^(5/2))

Rule 17

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[a^(m + 1/2)*b^(n - 1/2)*(Sqrt[b*v]/Sqrt[a*v])
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && IGtQ[n + 1/2, 0] && IntegerQ[m + n]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {\sqrt {b \cos (c+d x)}}{\cos ^{\frac {11}{2}}(c+d x)} \, dx &=\frac {\sqrt {b \cos (c+d x)} \int \sec ^5(c+d x) \, dx}{\sqrt {\cos (c+d x)}}\\ &=\frac {\sqrt {b \cos (c+d x)} \sin (c+d x)}{4 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {\left (3 \sqrt {b \cos (c+d x)}\right ) \int \sec ^3(c+d x) \, dx}{4 \sqrt {\cos (c+d x)}}\\ &=\frac {\sqrt {b \cos (c+d x)} \sin (c+d x)}{4 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {3 \sqrt {b \cos (c+d x)} \sin (c+d x)}{8 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {\left (3 \sqrt {b \cos (c+d x)}\right ) \int \sec (c+d x) \, dx}{8 \sqrt {\cos (c+d x)}}\\ &=\frac {3 \tanh ^{-1}(\sin (c+d x)) \sqrt {b \cos (c+d x)}}{8 d \sqrt {\cos (c+d x)}}+\frac {\sqrt {b \cos (c+d x)} \sin (c+d x)}{4 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {3 \sqrt {b \cos (c+d x)} \sin (c+d x)}{8 d \cos ^{\frac {5}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.07, size = 66, normalized size = 0.62 \begin {gather*} \frac {\sqrt {b \cos (c+d x)} \left (3 \tanh ^{-1}(\sin (c+d x)) \cos ^4(c+d x)+\left (2+3 \cos ^2(c+d x)\right ) \sin (c+d x)\right )}{8 d \cos ^{\frac {9}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[b*Cos[c + d*x]]/Cos[c + d*x]^(11/2),x]

[Out]

(Sqrt[b*Cos[c + d*x]]*(3*ArcTanh[Sin[c + d*x]]*Cos[c + d*x]^4 + (2 + 3*Cos[c + d*x]^2)*Sin[c + d*x]))/(8*d*Cos
[c + d*x]^(9/2))

________________________________________________________________________________________

Maple [A]
time = 0.23, size = 121, normalized size = 1.13

method result size
default \(\frac {\left (3 \left (\cos ^{4}\left (d x +c \right )\right ) \ln \left (-\frac {-1+\cos \left (d x +c \right )-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}\right )-3 \left (\cos ^{4}\left (d x +c \right )\right ) \ln \left (-\frac {-1+\cos \left (d x +c \right )+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}\right )+3 \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+2 \sin \left (d x +c \right )\right ) \sqrt {b \cos \left (d x +c \right )}}{8 d \cos \left (d x +c \right )^{\frac {9}{2}}}\) \(121\)
risch \(-\frac {i \sqrt {b \cos \left (d x +c \right )}\, \left (3 \,{\mathrm e}^{7 i \left (d x +c \right )}+11 \,{\mathrm e}^{5 i \left (d x +c \right )}-11 \,{\mathrm e}^{3 i \left (d x +c \right )}-3 \,{\mathrm e}^{i \left (d x +c \right )}\right )}{4 \sqrt {\cos \left (d x +c \right )}\, d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{4}}-\frac {3 \sqrt {b \cos \left (d x +c \right )}\, \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{8 \sqrt {\cos \left (d x +c \right )}\, d}+\frac {3 \sqrt {b \cos \left (d x +c \right )}\, \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{8 \sqrt {\cos \left (d x +c \right )}\, d}\) \(156\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*cos(d*x+c))^(1/2)/cos(d*x+c)^(11/2),x,method=_RETURNVERBOSE)

[Out]

1/8/d*(3*cos(d*x+c)^4*ln(-(-1+cos(d*x+c)-sin(d*x+c))/sin(d*x+c))-3*cos(d*x+c)^4*ln(-(-1+cos(d*x+c)+sin(d*x+c))
/sin(d*x+c))+3*cos(d*x+c)^2*sin(d*x+c)+2*sin(d*x+c))*(b*cos(d*x+c))^(1/2)/cos(d*x+c)^(9/2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 1656 vs. \(2 (89) = 178\).
time = 0.67, size = 1656, normalized size = 15.48 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(1/2)/cos(d*x+c)^(11/2),x, algorithm="maxima")

[Out]

-1/16*(12*(sin(8*d*x + 8*c) + 4*sin(6*d*x + 6*c) + 6*sin(4*d*x + 4*c) + 4*sin(2*d*x + 2*c))*cos(7/2*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c))) + 44*(sin(8*d*x + 8*c) + 4*sin(6*d*x + 6*c) + 6*sin(4*d*x + 4*c) + 4*sin(2*
d*x + 2*c))*cos(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 44*(sin(8*d*x + 8*c) + 4*sin(6*d*x + 6*c) +
 6*sin(4*d*x + 4*c) + 4*sin(2*d*x + 2*c))*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 12*(sin(8*d*x
 + 8*c) + 4*sin(6*d*x + 6*c) + 6*sin(4*d*x + 4*c) + 4*sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c))) - 3*(2*(4*cos(6*d*x + 6*c) + 6*cos(4*d*x + 4*c) + 4*cos(2*d*x + 2*c) + 1)*cos(8*d*x + 8*c) + co
s(8*d*x + 8*c)^2 + 8*(6*cos(4*d*x + 4*c) + 4*cos(2*d*x + 2*c) + 1)*cos(6*d*x + 6*c) + 16*cos(6*d*x + 6*c)^2 +
12*(4*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + 36*cos(4*d*x + 4*c)^2 + 16*cos(2*d*x + 2*c)^2 + 4*(2*sin(6*d*x
+ 6*c) + 3*sin(4*d*x + 4*c) + 2*sin(2*d*x + 2*c))*sin(8*d*x + 8*c) + sin(8*d*x + 8*c)^2 + 16*(3*sin(4*d*x + 4*
c) + 2*sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + 16*sin(6*d*x + 6*c)^2 + 36*sin(4*d*x + 4*c)^2 + 48*sin(4*d*x + 4*c
)*sin(2*d*x + 2*c) + 16*sin(2*d*x + 2*c)^2 + 8*cos(2*d*x + 2*c) + 1)*log(cos(1/2*arctan2(sin(2*d*x + 2*c), cos
(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/2*arctan2(sin(2*d*x + 2*c
), cos(2*d*x + 2*c))) + 1) + 3*(2*(4*cos(6*d*x + 6*c) + 6*cos(4*d*x + 4*c) + 4*cos(2*d*x + 2*c) + 1)*cos(8*d*x
 + 8*c) + cos(8*d*x + 8*c)^2 + 8*(6*cos(4*d*x + 4*c) + 4*cos(2*d*x + 2*c) + 1)*cos(6*d*x + 6*c) + 16*cos(6*d*x
 + 6*c)^2 + 12*(4*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + 36*cos(4*d*x + 4*c)^2 + 16*cos(2*d*x + 2*c)^2 + 4*(
2*sin(6*d*x + 6*c) + 3*sin(4*d*x + 4*c) + 2*sin(2*d*x + 2*c))*sin(8*d*x + 8*c) + sin(8*d*x + 8*c)^2 + 16*(3*si
n(4*d*x + 4*c) + 2*sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + 16*sin(6*d*x + 6*c)^2 + 36*sin(4*d*x + 4*c)^2 + 48*sin
(4*d*x + 4*c)*sin(2*d*x + 2*c) + 16*sin(2*d*x + 2*c)^2 + 8*cos(2*d*x + 2*c) + 1)*log(cos(1/2*arctan2(sin(2*d*x
 + 2*c), cos(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sin(1/2*arctan2(sin
(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 12*(cos(8*d*x + 8*c) + 4*cos(6*d*x + 6*c) + 6*cos(4*d*x + 4*c) + 4*co
s(2*d*x + 2*c) + 1)*sin(7/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 44*(cos(8*d*x + 8*c) + 4*cos(6*d*x
+ 6*c) + 6*cos(4*d*x + 4*c) + 4*cos(2*d*x + 2*c) + 1)*sin(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4
4*(cos(8*d*x + 8*c) + 4*cos(6*d*x + 6*c) + 6*cos(4*d*x + 4*c) + 4*cos(2*d*x + 2*c) + 1)*sin(3/2*arctan2(sin(2*
d*x + 2*c), cos(2*d*x + 2*c))) + 12*(cos(8*d*x + 8*c) + 4*cos(6*d*x + 6*c) + 6*cos(4*d*x + 4*c) + 4*cos(2*d*x
+ 2*c) + 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*sqrt(b)/((2*(4*cos(6*d*x + 6*c) + 6*cos(4*d*
x + 4*c) + 4*cos(2*d*x + 2*c) + 1)*cos(8*d*x + 8*c) + cos(8*d*x + 8*c)^2 + 8*(6*cos(4*d*x + 4*c) + 4*cos(2*d*x
 + 2*c) + 1)*cos(6*d*x + 6*c) + 16*cos(6*d*x + 6*c)^2 + 12*(4*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + 36*cos(
4*d*x + 4*c)^2 + 16*cos(2*d*x + 2*c)^2 + 4*(2*sin(6*d*x + 6*c) + 3*sin(4*d*x + 4*c) + 2*sin(2*d*x + 2*c))*sin(
8*d*x + 8*c) + sin(8*d*x + 8*c)^2 + 16*(3*sin(4*d*x + 4*c) + 2*sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + 16*sin(6*d
*x + 6*c)^2 + 36*sin(4*d*x + 4*c)^2 + 48*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 16*sin(2*d*x + 2*c)^2 + 8*cos(2*d
*x + 2*c) + 1)*d)

________________________________________________________________________________________

Fricas [A]
time = 0.43, size = 227, normalized size = 2.12 \begin {gather*} \left [\frac {3 \, \sqrt {b} \cos \left (d x + c\right )^{5} \log \left (-\frac {b \cos \left (d x + c\right )^{3} - 2 \, \sqrt {b \cos \left (d x + c\right )} \sqrt {b} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, b \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{3}}\right ) + 2 \, \sqrt {b \cos \left (d x + c\right )} {\left (3 \, \cos \left (d x + c\right )^{2} + 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{16 \, d \cos \left (d x + c\right )^{5}}, -\frac {3 \, \sqrt {-b} \arctan \left (\frac {\sqrt {b \cos \left (d x + c\right )} \sqrt {-b} \sin \left (d x + c\right )}{b \sqrt {\cos \left (d x + c\right )}}\right ) \cos \left (d x + c\right )^{5} - \sqrt {b \cos \left (d x + c\right )} {\left (3 \, \cos \left (d x + c\right )^{2} + 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{8 \, d \cos \left (d x + c\right )^{5}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(1/2)/cos(d*x+c)^(11/2),x, algorithm="fricas")

[Out]

[1/16*(3*sqrt(b)*cos(d*x + c)^5*log(-(b*cos(d*x + c)^3 - 2*sqrt(b*cos(d*x + c))*sqrt(b)*sqrt(cos(d*x + c))*sin
(d*x + c) - 2*b*cos(d*x + c))/cos(d*x + c)^3) + 2*sqrt(b*cos(d*x + c))*(3*cos(d*x + c)^2 + 2)*sqrt(cos(d*x + c
))*sin(d*x + c))/(d*cos(d*x + c)^5), -1/8*(3*sqrt(-b)*arctan(sqrt(b*cos(d*x + c))*sqrt(-b)*sin(d*x + c)/(b*sqr
t(cos(d*x + c))))*cos(d*x + c)^5 - sqrt(b*cos(d*x + c))*(3*cos(d*x + c)^2 + 2)*sqrt(cos(d*x + c))*sin(d*x + c)
)/(d*cos(d*x + c)^5)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))**(1/2)/cos(d*x+c)**(11/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(1/2)/cos(d*x+c)^(11/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*cos(d*x + c))/cos(d*x + c)^(11/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {b\,\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^{11/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*cos(c + d*x))^(1/2)/cos(c + d*x)^(11/2),x)

[Out]

int((b*cos(c + d*x))^(1/2)/cos(c + d*x)^(11/2), x)

________________________________________________________________________________________